

Instituto de Microelectrónica de Sevilla

Design Flow to Evaluate the Performance of Ring Oscillator PUFs on FPGAs

M.C. Martínez-Rodríguez, E. Camacho-Ruiz, S. Sánchez-Solano and P. Brox

26th November 2021

SPIRS Project with Grant Agreement No. 952622 under the EU H2020 research and innovation programme Grant PID2020-116664RBI00 funded by MCIN/AEI/10.13039/501100011033 LINKA20216 from CSIC

- 1. Introduction
- 2. Design flow of RO PUFs using SysGen
- 3. Performance evaluation of RO PUFS
- 4. Experimental results
- 5. Conclusions

- **Uniqueness:** different PUF instances should return different responses when the same challenge is applied
- **Reliability:** a PUF instance should return a response as unchanged as possible when the same challenge is applied
- **Unpredictability**: there is no way to predict an output PUF response, even the PUF designer can not guess it.

• PUF responses can be used to derive a unique digital identity (PUF ID) inherent to the electronic device in which the PUF circuitry is inserted.

Herder, C.; Yu, M.D.; Koushanfar, F.; Devadas, S. Physical Unclonable Functions and Applications: A Tutorial. Proc. IEEE 2014, 102, 1126–1141.

Conventional RO PUF

fRO $nstages \times \tau_{INV}$

Challenge 2

All the ROs are the same by construction, but their frequency is not the same due to variability of technological parameters and certain physical phenomena (such as jitter, transistor-level noise sources, etc.)

Herder, C.; Yu, M.D.; Koushanfar, F.; Devadas, S. Physical Unclonable Functions and Applications: A Tutorial. Proc. IEEE 2014, 102, 1126–1141.

RO PUF principle

For each pair of ROs, the output is the value of the counter of the ROs with the lower frequency

Kodýtek, F.; Lórencz, R. A Design of Ring Oscillator Based PUF on FPGA. 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits Systems, 2015, pp. 37–42. doi:10.1109/DDECS.2015.21. Kodtek, F.; Lrencz, R.; Buek, J. Improved Ring Oscillator PUF on FPGA and Its Properties. Microprocess. Microsyst. 2016, 47, 55–63. doi:10.1016/j.micpro.2016.02.005.

Design flow of RO PUFs using SysGen (I)

• HW co-simulation enables that the PUF is working on the FPGA while the challenges/responses are generated/processed with Matlab.

IMSE

-cnm

Instituto de Microelectrónica de Sevilla

- Analysis of a silicon PUF since the variations of CMOS manufacturing process are exploited only when the PUF is implemented. An analysis of the PUF behavior based on simulations would be <u>useless</u>.
- To ensure PUF properties: analysis of a huge number of PUF responses.

Design flow of RO PUFs using SysGen (II)

Challenge RO pair response: the value of the counter of the RO with the lower frequency

Design flow of RO PUFs using SysGen (III)

IMSE -cnm Instituto de Microelectrónica de Sevilla

Challenge-response RO PUF bit performance

Not all the bits provided by the overflow detection block satisfies the PUF properties. For each bit, reliability, unpredictability and entropy is analyzed.

• **Reliability** is measured by the <u>average bit stability</u>, the more stable, the more reliable.

IMSE -cnm

- **Unpredictability** is measured by the <u>average bit probability</u>. Ideal value: 50%.
- Entropy will determine the **uniqueness.** Ideal values: Hintra=1 and Hinter=1.

RO PUF performance

Challenge_i RO pair response: the value of the counter of the RO with the lower frequency PUF ID: Concatenation of the **selected bits** of each challenge for all possible challenges.

- Intra-Hamming distance (<u>HDintra</u>) determines the **similarity** between responses. Ideal value: HDIntra=0, which means that the RO PUF ID is always the same when the same sequence of challenges is applied to the same device.
- Inter-Hamming distance (<u>HDinter</u>) determines the **uniqueness** of the responses generated among different devices Ideal value: HDinter=50%

Performance evaluation of RO PUFS (III)

Obfuscation and recovery of a secret using RO PUFs

• Enrolment: we want to obfuscate a secret without storing it

• Reconstruction: we want to recovery the secret

Instituto de Microelectrónica de Sevilla

IMSE -cnm

Suh, G.E.; Devadas, S. Physical Unclonable Functions for Device Authentication and Secret Key Generation. 2007 44th ACM/IEEE Design Automation Conference, 2007, pp. 9–14. Delvaux, J.; Gu, D.; Schellekens, D.; Verbauwhede, I. Helper Data Algorithms for PUF-Based Key Generation: Overview and Analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2015, 34, 889–902. doi:10.1109/TCAD.2014.2370531

Hiller, M.; Kürzinger, L.; Sigl, G. Review of error correction for PUFs and evaluation on state-of-the-art FPGAs. Journal of Cryptographic Engineering 2020, 10, 229–247. doi:10.1007/s13389-020-00223-w.

Experimental results (I)

• Design:

- Two arrays of 150 ROs each.
- Each RO has 5 stages composed by 4 inverters and 1 NAND gate.
- The size of the output counters is 16 bits.
- Directives must be included in the HDL description:
 - (*ALLOW COMBINATORIAL LOOPS = "true", KEEP = "true" *)
 - (DONT TOUCH = "yes") wire <wire name >;

• Synthesis and implementation strategies

Code	Synthesis strategy	Implementation strategy
А	Default	Default
В	Flow AreaOptimized high	Area Explore
С	Flow AlternateRoutability	Performance ExplorePostRoutePhysOpt
D	Flow PerfOptimized high	Performance Explore
Е	Flow RuntimeOptimized	Flow RuntimeOptimized
G		Congestion SpreadLogic high

- 17 Basys 3 Artix-7 FPGA Boards
- Matlab R2018a
- Systen Generator in Xilinx Vivado 2018.2.

IMSE -cnm Instituto de Microelectrónica de Sevilla

Challenge-response RO PUF bit performance

For **1000 different responses** for the **same challenge**, for 150 different challenges, and 4 strategies (AA, BB, EE, CG) *17 boards = **68 different RO PUF.**

	Average stability					Average probability			Hintra			Hinter								
2011	AA	BB	EE	CG	All	AA	BB	EE	CG	All	AA	BB	EE	CG	All	AA	BB	EE	CG	All
1	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	1,000	0,999	0,999	1,000	1,000	0,761	0,760	0,758	0,753	0,757	0,7208	0,8300	0,7454	0,8756	0,7930	0,0508	0,0404	0,0266	0,0528	0,5862
3	0,999	0,999	0,999	0,999	0,999	0,662	0,652	0,658	0,658	0,657	0,8794	0,9314	0,9487	0,9388	0,9246	0,0871	0,0675	0,0632	0,0800	0,7375
4	0,999	0,999	0,998	0,998	0,998	0,567	0,574	0,574	0,584	0,574	0,9984	0,9807	0,9714	0,9678	0,9796	0,1975	0,1546	0,1482	0,1858	0,7828
5	0,997	0,997	0,996	0,996	0,997	0,529	0,537	0,542	0,538	0,536	0,9987	0,9951	0,9853	0,9941	0,9933	0,3854	0,4262	0,3817	0,4254	0,8902
6	0,993	0,993	0,993	0,993	0,993	0,567	0,578	0,570	0,561	0,568	0,9886	0,9876	0,9845	0,9628	0,9809	0,7324	0,8062	0,7571	0,7332	0,9374
7	0,985	0,986	0,984	0,986	0,985	0,521	0,512	0,518	0,523	0,517	0,9937	0,9949	0,9982	0,9904	0,9943	0,9496	0,9471	0,9417	0,9280	0,9825
8	0,967	0,970	0,968	0,967	0,968	0,510	0,508	0,518	0,513	0,511	0,9975	0,9934	0,9954	0,9935	0,9950	0,9553	0,9525	0,9576	0,9528	0,9888
9	0,934	0,941	0,936	0,937	0,937	0,509	0,493	0,520	0,501	0,505	0,9951	0,9968	0,9940	0,9938	0,9949	0,9550	0,9570	0,9515	0,9496	0,9891
10	0,869	0,876	0,871	0,871	0,872	0,499	0,491	0,493	0,504	0,496	0,9955	0,9935	0,9942	0,9981	0,9953	0,9540	0,9512	0,9603	0,9557	0,9898
11	0,739	0,741	0,741	0,742	0,741	0,504	0,506	0,507	0,494	0,502	0,9952	0,9959	0,9967	0,9961	0,9960	0,9580	0,9640	0,9530	0,9539	0,9884
12	0,562	0,561	0,563	0,563	0,562	0,500	0,502	0,503	0,500	0,501	0,9973	0,9958	0,9950	0,9958	0,9960	0,9530	0,9618	0,9542	0,9516	0,9897
13	0,513	0,513	0,513	0,513	0,513	0,500	0,500	0,501	0,500	0,500	0,9933	0,9982	0,9939	0,9942	0,9949	0,9601	0,9587	0,9510	0,9654	0,9882
14	0,513	0,513	0,513	0,513	0,513	0,499	0,500	0,501	0,500	0,500	0,9966	0,9930	0,9945	0,9968	0,9952	0,9532	0,9621	0,9515	0,9585	0,9889
15	0,513	0,513	0,513	0,513	0,513	0,500	0,500	0,501	0,500	0,500	0,9959	0,9948	0,9924	0,9939	0,9942	0,9662	0,9608	0,9535	0,9535	0,9886
16	0,513	0,513	0,513	0,513	0,513	0,500	0,500	0,500	0,499	0,500	0,9947	0,9976	0,9913	0,9966	0,9950	0,9603	0,9551	0,9544	0,9548	0,9908

Trade-off: MSB more reliable, LSB more unpredictable

RO PUF performance

Concatenation of selected bits of all the responses using all the possible challenges.

	PUF 6 - 8										
15015	HDInter	HDIntra	HDIntra_min	HDIntra_max							
AA	45,1209	1,8522	0,8873	2,6367							
BB	46,4804	1,7317	1,0176	2,2249							
BE	45,5980	1,6682	1,0816	2,1707							
CG	44,8268	1,8614	1,2282	2,9862							
All	48,6667	1,7784	0,8873	2,9862							

 $3 \times 150 = 450$ bits

	PUF 6 - 7									
-	HDInter	HDIntra	HDIntra_min	HDIntra_max						
AA	42,7500	1,0979	0,4580	1,5963						
BB	44,8235	1,0926	0,6447	1,7967						
5.5	43,3578	0,9951	0,5473	1,5030						
CG	42,3529	1,1313	0,4113	2,3470						
All	48,0187	1,0792	0,4113	2,3470						

PUF 7 - 8 HDIntra_max HDInter HDIntra HDIntra_min 49,7255 3.3220 AA 2,4211 1,1880 BB 49,5882 2,21571.3583 2,9950EE 49,5588 2,19631,4753 2,9507CG 48,9559 2,4438 1,7233 3,6150 All 49,7464 2,31921.18803.6150

 $2 \times 150 = 300$ bits

 $2 \times 150 = 300$ bits

IMSE -cnm

Obfuscation and recovery of a secret using RO PUFs

False negative Rate (FNR) and False positive Rate (FPR) after recovering a 32secret key using PUF 6-7 responses and different-length repetition codes

	A	A	BB		E	E	CG	
r	FNR	FPR	FNR	FPR	FNR	FPR	FNR	FPR
3	0,641	0,000	0,000	0,000	0,392	0,000	0,711	0,000
5	0,000	0,000	0,034	0,000	0,230	0,000	0,216	0,000
7	0,000	0,000	0,001	0,000	0,006	0,000	0,216	0,000
9	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

FNR and FPR after recovering a 32-bit secret key using r=9 for all boards and strategies

	AA	BB	EE	CG	all
FNR	0,0001	0,000	0,000	0,0144	0,000
FPR	0,000	0,000	0,000	0,000	0,000

- This work presents a design flow to evaluate the performance of RO PUFs on FPGAs based on a DSP tool for FPGAs that provides HW co-simulation.
- HW co-simulation enables that the PUF is working on the FPGA while the challenges/responses are generated/processed with Matlab.
- Analysis of a silicon PUF since the variations of CMOS manufacturing process are exploited **only** when the PUF is implemented.
- To ensure PUF properties: analysis of a huge number of PUF responses. Several scripts and functions were developed to evaluate the properties of the PUFs.
- After extensive experimental results, 2-bits per each CRP can be used to generate the PUF response obtaining a good performance in terms of entropy, probability and stability.
- The reliability of the PUF in the obfuscation and recovery of a secret key is corroborated with experimental results. No counterfeit device is able to retrieve a secret in any of the studied scenarios.

Instituto de Microelectrónica de Sevilla

Thank you for your attention! Questions?

macarena@imse-cnm.csic.es

SPIRS Project with Grant Agreement No. 952622 under the EU H2020 research and innovation programme Grant PID2020-116664RBI00 funded by MCIN/AEI/10.13039/501100011033 LINKA20216 from CSIC

Post-doc grant supported by the Andalusian government under EU PO. FSE.

